Computer simulations of electrorheological fluids in the dipole-induced dipole model.

نویسندگان

  • Y L Siu
  • J T Wan
  • K W Yu
چکیده

We have employed the multiple image method to compute the interparticle force for a polydisperse electrorheological (ER) fluid in which the suspended particles can have various sizes and different permittivities. The point-dipole (PD) approximation, being routinely adopted in the computer simulation of ER fluids, is known to err considerably when the particles approach and finally touch due to multipolar interactions. The PD approximation becomes even worse when the dielectric contrast between the particles and the host medium is large. From the results, we show that the dipole-induced-dipole (DID) model yields very good agreements with the multiple image results for a wide range of dielectric contrasts and polydispersity. As an illustration, we have employed the DID model to simulate the athermal aggregation of particles in ER fluids, both in uniaxial and rotating fields. We find that the aggregation time is significantly reduced. The DID model partially accounts for the multipolar interaction and is simple to use in the computer simulation of ER fluids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Many-body dipole-induced dipole model for electrorheological fluids

Theoretical investigations on electrorheological (ER) fluids usually rely on computer simulations. An initial approach for these studies would be the point-dipole (PD) approximation, which is known to err considerably when the particles approach and finally touch due to many-body and multipolar interactions. Thus various work attempted to go beyond the PD model. Being beyond the PD model, previ...

متن کامل

Computer simulations of polydisperse ER fluids in DID model

The theoretical investigations on electrorheological (ER) fluids are usually concentrated on monodisperse systems. Real ER fluids must be polydisperse in nature, i.e., the suspended particles can have various sizes and/or different dielectric constants. An initial approach for these studies would be the pointdipole (PD) approximation, which is known to err considerably when the particles approa...

متن کامل

Ground state of a polydisperse electrorheological solid: beyond the dipole approximation.

The ground state of an electrorheological (ER) fluid has been studied based on our recently proposed dipole-induced dipole (DID) model. We obtained an analytical expression of the interaction between chains of particles which are of the same or different dielectric constants. The effects of dielectric constants on the structure formation in monodisperse and polydisperse electrorheological fluid...

متن کامل

Interparticle force in polydisperse electrorheological fluids: Beyond the dipole approximation

We have developed a multiple image method to compute the interparticle force for a polydisperse electrorheological (ER) fluid. We apply the formalism to a pair of dielectric spheres of different dielectric constants and calculate the force as a function of the separation. The results show that the point-dipole (PD) approximation errs considerably because many-body and multipolar interactions ar...

متن کامل

An Improved ISM Equation of State for Polar Fluids

We developed an equation of state (EOS) by Ihm, Song, and Mason (ISM) for polar fluids. The model consists of four parameters, namely, the second virial coefficient, an effective van der Waals co-volume, a scaling factor, and the reduced dipole moment. The second virial coefficient is calculated from a correlation that uses the heat of vaporization, and the liquid density at the normal boiling ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 64 5 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2001